
Towards Formally Describing Program Traces of Chains of
Language Model Calls with Causal Influence Diagrams: A

Sketch
v1.1

Brian Muhia,
CTO, Fahamu Inc

May 30 2023

Abstract
In this report, we analyze five agent designs implemented by an interface built within the
factored cognition framework (https://primer.ought.org/), and use casual influence diagrams
(CIDs) (Everitt et al, 2021) to formally describe the agent interactions, their influences and
how they contribute towards performing a user query, based on context from a document
archive.
This helps us in documenting the system while making plans for future changes, such as
adding a reranking step, or adding verifiers that remove unwanted outputs or associations.
A research program on interface design is outlined, wherein we plan the use of mechanistic
interpretability tooling to improve the causal influence diagrams by adding some weak notion
of conditional probability distributions, and hypothesize their possible contribution towards
formally modeling and representing the introduction of deceptive answers in a dataset of
responses from agents involved in generating subquestions, filtering, answering
sub-questions and aggregating context.

Introduction
When we compose small, independent contributions from agents that know about the data
they’re being asked about, we introduce a bias for representing the documents provided,
which is counterbalanced by the bias from the models involved and how they have been
trained, which may improve the answer quality by faithfully and factually representing the
context, or they may entirely ignore relevant parts of the context and focus on others, or go
off topic entirely.

We aim to illuminate this complex problem first by formally describing how the designs of two
agent calls interact with context data and then by discussing how we might in the future
analyze the dataset using a smaller local model with a causal tracing framework in order to
visualize the factuality of agent responses. The specifics of this and analysis of the related
data are left to future work.

1

Related Work
The Causal Incentives working group (https://causalincentives.com/) has supported the
release of the Python library PyCID (https://github.com/causalincentives/pycid), which we
use to automate the visualisation process.

Process-Based Supervision
We aim to understand how systems designed through the task decomposition framework
generate answers by observing and controlling data flow through the process by which
answers are generated. We hope to learn more about how the specific type of answering
process is working in practice by tracing chained calls to large language models and
formalising the resulting program trace in a diagram that documents it. For this, we have
several data points to build on, including:

● User question
● Answer
● Data Source (list of paragraphs before filtering)
● Context (list of paragraphs after classifying and filtering)
● (Optional) Sub-questions & Sub-answers (Generated by sub-agents)

We aim to use data to study the causal relationships between each of these steps, as they
are occurring at different times in the process of answering a user’s question, and thus
influence each other in a directed acyclic graph.

Causal Influence Diagrams in Practice
Definition: A Causal influence Diagram (CID) (Everitt et al, 2021) is a tuple (V,E) where:

● (V,E) is a directed acyclic graph with a set of
● vertices V
● connected by directed edges E⊆V×V

These vertices are partitioned into:

○ D⊆V is a set of decision nodes represented by rectangles.

○ U⊆V∖D is a set of utility nodes represented by diamonds and utility nodes
have no successors.

○ X=V∖(D∪U) is the set of chance nodes represented by ovals.

Definition: A Causal influence Model (CIM) (Everitt et al, 2021) is a tuple
(V,E,θ) where (V,E)
is a CID and:

2

https://causalincentives.com/
https://github.com/causalincentives/pycid

● Θ is a parameterisation over the nodes in the CID specifying:

○ A finite domain dom(V) for each node V∈V
○ Real-valued domains dom(U)⊂R for all utility nodes U∈U.

○ A set of conditional probability distributions (CPDs), Pr(V∣paV), for every

chance and utility node X∪U∈V. Taken together, these form a partial

distribution Pr(X,U:D)=∏V∈V∖DPr(V|PaV) over the variables in the CID.

In this report we only describe CIDs, leaving the automated program tracing and mechanistic
interpretability work that would get us CIMs for future research.

An example showing five pycid CIDs. These are manually written to describe two LLM
chains that are currently being tested. The future hope is to use mechanistic interpretability
first to introduce numerical weights and thus find a basis for representing CPDs with some
weak notion of (positive or negative) contribution to the total factuality of the response. If
there is merit to this, we aim to design a mechanism for automating the generation of these
weakly factuality-weighted CIDs when provided with a program trace.
Notation:

● Mn = Models/Agents are represented as decision nodes
● C = Context
● I = User Input (or Intent)
● O = Output is a utility node

Agent Diagram 1
This first call instantiates an agent M1 to answer a single user question, and a list of
paragraphs C obtained after a separate filtering process as context, using it to answer the
question as output O

!pip install pycid
code to generate the diagrams appears next to each diagram

import pycid
m1_cid = pycid.CID(

[
("C", "M1"),
("I", "C"),
("I", "M1"),
("M1", "O")

],
decisions=["M1"],
utilities=["O"]

)
m1_cid.draw()

Single interaction with the model M1

3

Agent Diagram 2

Parallel Scenarios
The second call first instantiates a single agent M1 to generate 2-5 sub-questions based on
user input I and the document context C. This instantiates 5 parallel sub-agents (M2-M6) to
answer each of these sub-questions using the context, and a 7th agent M7 to aggregate the
sub-answers and context into a more detailed answer as output O.

(PV1) Parallel Variant 1 where the user's intent is omitted from the context of agents M2-M6.

variant_1 = pycid.CID(
[

("C", "M1"),
("C", "M2"),
("C", "M3"),
("C", "M4"),
("C", "M5"),
("C", "M6"),
("C", "M7"),
("I", "M1"),
("I", "M7"),
("M1", "M2"),
("M1", "M3"),
("M1", "M4"),
("M1", "M5"),
("M1", "M6"),
("M2", "M7"),
("M3", "M7"),
("M4", "M7"),
("M5", "M7"),
("M6", "M7"),
("M7", "O"),

],
decisions=["M1", "M2", "M3", "M4", "M5", "M6", "M7"],
utilities=["O"]

)
variant_1.draw()

My current hypothesis is that there are millions of these diagrams and also that there are
easy ways to see possible failure modes in the designs of factored cognition schemes before
they are implemented.

4

(PV2) Parallel Variant 2 where the user's intent is included in the context of all agents M1-M7.
variant_2 = pycid.CID(

[
("C", "M1"),
("C", "M2"),
("C", "M3"),
("C", "M4"),
("C", "M5"),
("C", "M6"),
("C", "M7"),
("I", "M1"),
("I", "M2"),
("I", "M3"),
("I", "M4"),
("I", "M5"),
("I", "M6"),
("I", "M7"),
("M1", "M2"),
("M1", "M3"),
("M1", "M4"),
("M1", "M5"),
("M1", "M6"),
("M2", "M7"),
("M3", "M7"),
("M4", "M7"),
("M5", "M7"),
("M6", "M7"),
("M7", "O"),

],
decisions=["M1", "M2", "M3", "M4", "M5", "M6", "M7"],
utilities=["O"]

)

variant_2.draw()

Sequential Scenarios
We clean up the two above variants to prevent data duplication in the prompt, and add a few
more links to describe 2 more variants that explore the idea of chaining in a more sequential
way, where data flows directly from Mn to Mn+1.We use this formalism to note that as
decision nodes with some level of independence and unreliability, factuality might be
broken at any stage and we would want to detect it.

(SV1) Sequential Variant 1 where the user's intent is omitted from the context of agents M2-M6.
variant_3 = pycid.CID(

[
("C", "M1"),
("C", "M2"),
("C", "M3"),
("C", "M4"),
("C", "M5"),
("C", "M6"),
("C", "M7"),
("I", "M1"),
("I", "M7"),
("M1", "M2"),
("M1", "M3"),
("M1", "M4"),
("M1", "M5"),
("M1", "M6"),
("M5", "M6"),
("M2", "M3"),
("M3", "M4"),
("M4", "M5"),
("M5", "M6"),

5

("M6", "M7"),
("M7", "O"),

],
decisions=["M1", "M2", "M3", "M4", "M5", "M6", "M7"],
utilities=["O"]

)

variant_3.draw()

By intuition, my prediction is that in sequential scenarios errors would compound in subtle
ways to more sub-agents faster than in parallel scenarios. There are still more opportunities
for either early stopping or self-healing in the sequential case since assuming the detection
of a lack of factual grounding in e.g. node M3 in the two Sequential variants, means that we
may have an opportunity to remove that sub-answer and retry, or remove that node entirely
by blanking out the text. Qn: So what would be a good way to deal with factuality issues in
Parallel Agents M2-M6?

(SV2) Sequential Variant 2, where the user's intent is included in the context of all agents M1-M7.
variant_4 = pycid.CID(

[
("C", "M1"),
("C", "M2"),
("C", "M3"),
("C", "M4"),
("C", "M5"),
("C", "M6"),
("C", "M7"),
("I", "M1"),
("I", "M2"),
("I", "M3"),
("I", "M4"),
("I", "M5"),
("I", "M6"),
("I", "M7"),
("M1", "M2"),
("M1", "M3"),
("M1", "M4"),
("M1", "M6"),
("M1", "M5"),
("M5", "M6"),
("M2", "M3"),
("M3", "M4"),
("M4", "M5"),
("M5", "M6"),
("M6", "M7"),
("M7", "O"),

],
decisions=["M1", "M2", "M3", "M4", "M5", "M6", "M7"],
utilities=["O"]

)

variant_4.draw()

6

Exercises
1. How would one filter the data flow to M7 and prevent deceptive answers from the

previous agents from causing M7 to deceive the user, assuming each agent is
equally unreliable.

2. Which of variant_1 vs variant_2 or variant_3 vs variant_4 are more aligned with
the user’s intent?

a. When you consider all of them, together?
b. Could we rank them in order of “alignment to user intent”?
c. Which would be more likely to cause an accident?
d. Could we tell just from analysing the drawing, i.e. before implementing them?

Hint: We might assume that M7 gets the same information in both (Sequential and Parallel)
cases of Variant 1, but that variant either benefits, or fails creatively or catastrophically, from
a slightly more independent search for answers that may or may not be faithful to the
context, given its instructions and the sub-questions generated by M1.

Relationship to ML Safety
1. Assuming a system that is given a lot of and power over its environment is

coordinated in this way, we would want to characterise coordination failures from
agents that are assumed to be equal to one another but each have the same failure
mode that can compound across agents. A coordination failure in SV1 might get
much worse very quickly when left unchecked. The strategy of intervening on the
data flow in each step to create an illusion of safety breaks down when the pillars
themselves are unstable.

2. Formalising the ways in which multi-agent systems interact with their users is a
purpose of the causal incentives program. My aim in this is to add more links
between the two dense subgraphs of mechanistic interpretability and causal
incentives.

3. Understanding the ways this intersects with questions related to introduced
unfairness/bias/lack of generalizability through training methods.

References

1. Causal Incentives Working Group https://causalincentives.com
2. PyCID: A Python Library for Causal Influence Diagrams

https://conference.scipy.org/proceedings/scipy2021/pdfs/james_fox.pdf
3. Agent Incentives: A Causal Perspective https://arxiv.org/pdf/2102.01685.pdf
4. Modeling AGI Safety Frameworks with Causal Influence Diagrams https://arxiv.org/pdf/1906.08663.pdf
5. Understanding Agent Incentives using Causal Influence Diagrams, Part 1: Single Action Settings

https://arxiv.org/abs/1902.09980
6. Locating and Editing Factual Associations in GPT https://rome.baulab.info/

7

https://causalincentives.com
https://conference.scipy.org/proceedings/scipy2021/pdfs/james_fox.pdf
https://arxiv.org/pdf/2102.01685.pdf
https://arxiv.org/pdf/1906.08663.pdf
https://arxiv.org/abs/1902.09980
https://rome.baulab.info/

