Fuzzing LLMs

A framework for discovering edge cases
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What is fuzzing & why is it relevant for Al safety?

e On a high level, fuzzing is repeatedly running a program with generated inputs

that may be syntactically or semantically malformed
o  Execution of program using input(s) sampled from an input space that protrudes the expected
input space of the program

e White-box fuzzing (Godefroid, 2007)

o  Use the internals of the program to generate fuzzing examples
o  Often slow but quite interesting in neural network relations

Black-bhox fuzzing (10-driven / data-driven testing)
Apply fuzzing to LLMs and use LLMs to generate the examples
e Al safety

o  Unexpected behaviors of language models are important to find due to the inherent security risks
in both exploit vulnerabilities and general misbehaviors during deployment

o  An example is Rumbelow & Watkins (2023) who show that tokens can be semantically
misinterpreted by a network due to the structure of the training data in the long tail of token
probabilities



Kxisting work: Fuzzing using LLMs

Deng et al. (2022/23) use LLMs to generate code examples to test deep learning

libraries for edge case bugs.
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Figure 2: Overview of FuzzGPT.
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Kxisting work:
Automated red teaming

Perez et al. (2022) use LLMs to
generate adversarial texts
designed to elicit harmful
responses, as a way to catch edge
cases.
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Figure 1: Overview: We automatically generate test
cases with a language model (LM), reply with the target
LM, and find failing test cases using a classifier.



What did we do?

e We use the new RWKYV architecture from EleutherAlI (2023) at ~540M
parameters (the largest is 14B)

e We have multiple prompt histories:
o H1 is composed of the P1 input and any output from M1 to P1. M1_out is the M1 output
isolated.
o H2 is composed of M1_out and M2's output to P1_out, M2_out.
o H3 is composed of P3 formatted with M1_out and M2_out along with M3's output given this
formatted P3. H3 is limited to a single digit numerical output.

e The resulting framework presents the first steps towards automated fuzzing
e We did not get to a state where results were possible due to my computer
running out of power in the airport



What did we find?

e The 540M parameter RWKYV is not at all capable enough to execute or evaluate
fuzzing

e The P1 prompt is quite important and will probably benefit from a chatbot
RLHF step

e The 100-line implementation of RWKYV we used might be too simplistic for this
specific scenario

e Next steps
o Do the steps manually using three ChatGPT windows
o  Run it using the GPT-4 API and see if the outputs make sense
o Save the activations of the network while running each fuzzing attempt
o See more future steps in the repository at hitps://qithub.com/esbenke/verification-jam



https://github.com/esbenkc/verification-jam

Framework of the prototype
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