
Fuzzing LLMs
A framework for discovering edge cases



What is fuzzing & why is it relevant for AI safety?
● On a high level, fuzzing is repeatedly running a program with generated inputs 

that may be syntactically or semantically malformed
○ Execution of program using input(s) sampled from an input space that protrudes the expected 

input space of the program
● White-box fuzzing (Godefroid, 2007)

○ Use the internals of the program to generate fuzzing examples
○ Often slow but quite interesting in neural network relations

● Black-box fuzzing (IO-driven / data-driven testing)
● Apply fuzzing to LLMs and use LLMs to generate the examples
● AI safety

○ Unexpected behaviors of language models are important to find due to the inherent security risks 
in both exploit vulnerabilities and general misbehaviors during deployment

○ An example is Rumbelow & Watkins (2023) who show that tokens can be semantically 
misinterpreted by a network due to the structure of the training data in the long tail of token 
probabilities



Existing work: Fuzzing using LLMs
Deng et al. (2022/23) use LLMs to generate code examples to test deep learning 
libraries for edge case bugs.



Existing work: 
Automated red teaming

Perez et al. (2022) use LLMs to 
generate adversarial texts 
designed to elicit harmful 
responses, as a way to catch edge 
cases.



What did we do?
● We use the new RWKV architecture from EleutherAI (2023) at ~540M 

parameters (the largest is 14B)
● We have multiple prompt histories:

○ H1 is composed of the P1 input and any output from M1 to P1. M1_out is the M1 output 
isolated.

○ H2 is composed of M1_out and M2's output to P1_out, M2_out.
○ H3 is composed of P3 formatted with M1_out and M2_out along with M3's output given this 

formatted P3. H3 is limited to a single digit numerical output.
● The resulting framework presents the first steps towards automated fuzzing
● We did not get to a state where results were possible due to my computer 

running out of power in the airport



● The 540M parameter RWKV is not at all capable enough to execute or evaluate 
fuzzing

● The P1 prompt is quite important and will probably benefit from a chatbot 
RLHF step

● The 100-line implementation of RWKV we used might be too simplistic for this 
specific scenario

● Next steps
○ Do the steps manually using three ChatGPT windows
○ Run it using the GPT-4 API and see if the outputs make sense
○ Save the activations of the network while running each fuzzing attempt
○ See more future steps in the repository at https://github.com/esbenkc/verification-jam 

What did we find?

https://github.com/esbenkc/verification-jam


Framework of the prototype


