
Fuzzing Large Language Models1

Esben Kran
Apart Research

Abstract

Language models have shown significant non-human and
surprising behavior given both specific adversarial and stochastic
prompts. In this work, we use a 14B parameter RNN to
adversarially generate 'fuzzing' prompts, prompts intentionally
designed to elicit surprising and off-distribution responses. We
then use the same model to evaluate the surprisal of the output
given the prompt on a scale of 1 to 5. Our work presents the next
steps towards elicitation and identification of out-of-distribution
failure cases for LLMs, following valuable work from the AI safety
research community. These are shared as a dataset at
https://github.com/esbenkc/verification-jam.

Keywords: Scalable oversight, benchmarks, ML safety

Figure 1 – Diagram of the prompt and model pathway of our fuzzing dataset

1 Research conducted at the Apart Research Alignment Jam #8 (Safety Verification), 2023
(see https://alignmentjam.com/jam/verification)

1

https://github.com/esbenkc/verification-jam
https://alignmentjam.com/jam/verification


1. Introduction
Fuzzing is a critical technique in software testing that involves the execution of a
program using generated inputs that may be syntactically or semantically
malformed. These inputs, derived from an input space that extends beyond the
expected program parameters, serve to expose latent vulnerabilities or aberrations
in the system.

There are two primary methods of fuzzing: white-box and black-box. White-box
fuzzing, introduced by Godefroid in 2007, uses the internals of the program to
generate fuzzing examples. While this method can be slow, it provides insightful
perspectives, particularly in the context of neural networks. On the other hand,
black-box fuzzing, also known as IO-driven or data-driven testing, does not rely on
the internal structure of the program. This technique becomes especially intriguing
when applied to large language models (LLMs), with LLMs themselves being
employed to generate the testing examples.

In the field of AI safety, detecting and mitigating the unexpected behaviors of
language models are of paramount importance. This is not merely due to the
potential exploit vulnerabilities, but also to avoid general misbehaviors during the
deployment phase. As Rumbelow & Watkins (2023) have demonstrated, the
structure of the training data, particularly in the long tail of token probabilities, can
lead to a network semantically misinterpreting tokens. This exemplifies how the
inherent security risks in language models can manifest, reinforcing the need for
effective fuzzing strategies.

2. Methods
In this study, we employ the newly developed RWKV architecture by EleutherAI
(2023), incorporating approximately 540M parameters - a notable reduction
compared to the largest model, which employs 14B parameters. This choice offers
an effective balance between computational efficiency and model complexity.

The experimental setup involved the use of multiple prompt histories. Specifically,
we constructed three histories, H1, H2, and H3. H1 comprises the P1 input and
any output from model M1 to P1, with M1_out denoting the isolated output from
M1. H2 was composed of M1_out and M2's output to P1_out, defined as M2_out.
Lastly, H3 encapsulated P3, which was formatted with M1_out and M2_out, and
included M3's output given this formatted P3. For H3, we restricted the output to a
single digit numerical value, enforcing a specific constraint on the model.

This approach paves the way towards the realization of automated fuzzing, offering
a structured and efficient method for testing large language models. However, it's
worth noting that this research remains in its early stages. A complete run of the
model was not achieved due to unforeseen circumstances - a power outage during
testing at the airport. Future work will aim to rectify this situation and provide
comprehensive results on the effectiveness of this method.

Apart Research Alignment Jam #8 (Safety Verification), 2023 2



3. Results & discussion
Upon analysis of the results, we found that the 540M parameter RWKV was not
capable of executing or evaluating fuzzing effectively. This underscores the
challenge of task complexity in relation to model size, indicating that further model
optimization or an increase in parameters might be required for successful
execution.

Furthermore, our observations highlight the crucial role of the P1 prompt in the
process. Improvements in this area could be achieved through a chatbot
Reinforcement Learning from Human Feedback (RLHF) step, which could provide
the model with a more dynamic and interactive learning environment.

However, it is worth noting that our 100-line implementation of the RWKV may
have been overly simplistic for this specific scenario. Future implementations might
need to incorporate more complexity to handle the diverse challenges that arise in
fuzzing.

Moving forward, we have identified several next steps to continue this research. A
manual approach can be tested, where three separate ChatGPT windows are used
to simulate the process. Additionally, using the GPT-4 API could provide another
avenue to evaluate the effectiveness of the model's outputs. Furthermore, to gain
more insights into the model's behavior during fuzzing attempts, we could save the
network's activations for subsequent analysis.

For additional details on the future direction of this research and other planned
improvements, we invite readers to visit our repository at
https://github.com/esbenkc/verification-jam. There, we have outlined further steps
to continue pushing the boundaries of this novel approach to language model
fuzzing.

4. Discussion and Conclusion
In conclusion, fuzzing emerges as a crucial method in AI safety, providing insights
into unexpected behaviors of language models and helping identify potential
vulnerabilities. Its application to large language models, however, is in its infancy
and is laden with challenges, as seen with our experience with the 540M parameter
RWKV model. Our exploration underscored the complexity of the task, the
importance of prompt quality, and potential limitations of simplistic
implementations. As AI technologies evolve, refining and optimizing fuzzing
techniques will be paramount to ensure robust and secure language models.
Nonetheless, the journey towards efficient fuzzing is as challenging as it is
promising, meriting rigorous research and innovative approaches.

Apart Research Alignment Jam #8 (Safety Verification), 2023 3

https://github.com/esbenkc/verification-jam

